Large language models (LLMs) have been shown to be able to perform new tasks based on a few demonstrations or natural language instructions. While these capabilities have led to widespread adoption, most LLMs are developed by resource-rich organizations and are frequently kept from the public. As a step towards democratizing this powerful technology, we present BLOOM, a 176B-parameter open-access language model designed and built thanks to a collaboration of hundreds of researchers. BLOOM is a decoder-only Transformer language model that was trained on the ROOTS corpus, a dataset comprising hundreds of sources in 46 natural and 13 programming languages (59 in total). We find that BLOOM achieves competitive performance on a wide variety of benchmarks, with stronger results after undergoing multitask prompted finetuning. To facilitate future research and applications using LLMs, we publicly release our models and code under the Responsible AI License.
translated by 谷歌翻译
动态磁共振成像(MRI)是一种流行的医学成像技术,可生成组织和器官内部对比度材料流动的图像序列。但是,仅在少数可行性研究中证明了它在通过食道运动中的成像运动中的应用,并且相对尚未探索。在这项工作中,我们提出了一个称为力学的MRI(MRI-MEC)的计算框架,该计算框架增强了该能力,从而增加了动态MRI在诊断食管疾病中的适用性。菠萝汁用作动态MRI的吞咽对比材料,MRI图像序列被用作MRI-MECH的输入。 MRI-MECH将食道建模为柔性的一维管,弹性管壁遵循线性管定律。然后,通过一维质量和动量保护方程式,通过食道流动。这些方程是使用物理信息的神经网络(PINN)求解的。 PINN最大程度地减少了MRI测量和模型预测之间的差异,以确保始终遵循流体流量问题的物理。 MRI-Mech计算了食管转运期间的流体速度和压力,并通过计算壁刚度和主动弛豫来估计食道健康的机械健康。此外,MRI-Mech预测了在排空过程中有关下食管下括约肌的缺失信息,这证明了其适用于缺少数据或图像分辨率差的方案。除了基于食管机械健康的定量估计值来改善临床决策外,MRI-MECH还可以增强用于应用其他医学成像方式以增强其功能。
translated by 谷歌翻译
There are multiple scales of abstraction from which we can describe the same image, depending on whether we are focusing on fine-grained details or a more global attribute of the image. In brain mapping, learning to automatically parse images to build representations of both small-scale features (e.g., the presence of cells or blood vessels) and global properties of an image (e.g., which brain region the image comes from) is a crucial and open challenge. However, most existing datasets and benchmarks for neuroanatomy consider only a single downstream task at a time. To bridge this gap, we introduce a new dataset, annotations, and multiple downstream tasks that provide diverse ways to readout information about brain structure and architecture from the same image. Our multi-task neuroimaging benchmark (MTNeuro) is built on volumetric, micrometer-resolution X-ray microtomography images spanning a large thalamocortical section of mouse brain, encompassing multiple cortical and subcortical regions. We generated a number of different prediction challenges and evaluated several supervised and self-supervised models for brain-region prediction and pixel-level semantic segmentation of microstructures. Our experiments not only highlight the rich heterogeneity of this dataset, but also provide insights into how self-supervised approaches can be used to learn representations that capture multiple attributes of a single image and perform well on a variety of downstream tasks. Datasets, code, and pre-trained baseline models are provided at: https://mtneuro.github.io/ .
translated by 谷歌翻译
In unstructured environments, robots run the risk of unexpected collisions. How well they react to these events is determined by how transparent they are to collisions. Transparency is affected by structural properties as well as sensing and control architectures. In this paper, we propose the collision reflex metric as a way to formally quantify transparency. It is defined as the total impulse transferred in collision, which determines the collision mitigation capabilities of a closed-loop robotic system taking into account structure, sensing, and control. We analyze the effect of motor scaling, stiffness, and configuration on the collision reflex of a system using an analytical model. Physical experiments using the move-until-touch behavior are conducted to compare the collision reflex of direct-drive and quasi-direct-drive actuators and robotic hands (Schunk WSG-50 and Dexterous DDHand.) For transparent systems, we see a counter-intuitive trend: the impulse may be lower at higher pre-impact velocities.
translated by 谷歌翻译
In this paper, we assess the viability of transformer models in end-to-end InfoSec settings, in which no intermediate feature representations or processing steps occur outside the model. We implement transformer models for two distinct InfoSec data formats - specifically URLs and PE files - in a novel end-to-end approach, and explore a variety of architectural designs, training regimes, and experimental settings to determine the ingredients necessary for performant detection models. We show that in contrast to conventional transformers trained on more standard NLP-related tasks, our URL transformer model requires a different training approach to reach high performance levels. Specifically, we show that 1) pre-training on a massive corpus of unlabeled URL data for an auto-regressive task does not readily transfer to binary classification of malicious or benign URLs, but 2) that using an auxiliary auto-regressive loss improves performance when training from scratch. We introduce a method for mixed objective optimization, which dynamically balances contributions from both loss terms so that neither one of them dominates. We show that this method yields quantitative evaluation metrics comparable to that of several top-performing benchmark classifiers. Unlike URLs, binary executables contain longer and more distributed sequences of information-rich bytes. To accommodate such lengthy byte sequences, we introduce additional context length into the transformer by providing its self-attention layers with an adaptive span similar to Sukhbaatar et al. We demonstrate that this approach performs comparably to well-established malware detection models on benchmark PE file datasets, but also point out the need for further exploration into model improvements in scalability and compute efficiency.
translated by 谷歌翻译
In this paper, we explore the use of metric learning to embed Windows PE files in a low-dimensional vector space for downstream use in a variety of applications, including malware detection, family classification, and malware attribute tagging. Specifically, we enrich labeling on malicious and benign PE files using computationally expensive, disassembly-based malicious capabilities. Using these capabilities, we derive several different types of metric embeddings utilizing an embedding neural network trained via contrastive loss, Spearman rank correlation, and combinations thereof. We then examine performance on a variety of transfer tasks performed on the EMBER and SOREL datasets, demonstrating that for several tasks, low-dimensional, computationally efficient metric embeddings maintain performance with little decay, which offers the potential to quickly retrain for a variety of transfer tasks at significantly reduced storage overhead. We conclude with an examination of practical considerations for the use of our proposed embedding approach, such as robustness to adversarial evasion and introduction of task-specific auxiliary objectives to improve performance on mission critical tasks.
translated by 谷歌翻译
Artificial Intelligence (AI) is having a tremendous impact across most areas of science. Applications of AI in healthcare have the potential to improve our ability to detect, diagnose, prognose, and intervene on human disease. For AI models to be used clinically, they need to be made safe, reproducible and robust, and the underlying software framework must be aware of the particularities (e.g. geometry, physiology, physics) of medical data being processed. This work introduces MONAI, a freely available, community-supported, and consortium-led PyTorch-based framework for deep learning in healthcare. MONAI extends PyTorch to support medical data, with a particular focus on imaging, and provide purpose-specific AI model architectures, transformations and utilities that streamline the development and deployment of medical AI models. MONAI follows best practices for software-development, providing an easy-to-use, robust, well-documented, and well-tested software framework. MONAI preserves the simple, additive, and compositional approach of its underlying PyTorch libraries. MONAI is being used by and receiving contributions from research, clinical and industrial teams from around the world, who are pursuing applications spanning nearly every aspect of healthcare.
translated by 谷歌翻译
在不失去先前学习的情况下学习新任务和技能(即灾难性遗忘)是人为和生物神经网络的计算挑战,但是人工系统努力与其生物学类似物达成平等。哺乳动物的大脑采用众多神经手术来支持睡眠期间的持续学习。这些是人工适应的成熟。在这里,我们研究了建模哺乳动物睡眠的三个不同组成部分如何影响人工神经网络中的持续学习:(1)在非比型眼运动(NREM)睡眠期间观察到的垂直记忆重播过程; (2)链接到REM睡眠的生成记忆重播过程; (3)已提出的突触降压过程,以调整信噪比和支持神经保养。在评估持续学习CIFAR-100图像分类基准上的性能时,我们发现将所有三个睡眠组件的包含在内。在以后的任务期间,训练和灾难性遗忘在训练过程中提高了最高准确性。尽管某些灾难性遗忘在网络培训过程中持续存在,但更高水平的突触缩减水平会导致更好地保留早期任务,并进一步促进随后培训期间早期任务准确性的恢复。一个关键的要点是,在考虑使用突触缩小范围的水平时,手头有一个权衡 - 更具侵略性的缩减更好地保护早期任务,但较少的缩减可以增强学习新任务的能力。中级水平可以在训练过程中与最高的总体精度达到平衡。总体而言,我们的结果都提供了有关如何适应睡眠组件以增强人工连续学习系统的洞察力,并突出了未来神经科学睡眠研究的领域,以进一步进一步进行此类系统。
translated by 谷歌翻译
这项工作介绍了模型预测控制(MPC)的公式,该公式适应基于任务的模型的复杂性,同时保持可行性和稳定性保证。现有的MPC实现通常通过缩短预测范围或简化模型来处理计算复杂性,这两者都可能导致不稳定。受到行为经济学,运动计划和生物力学相关方法的启发,我们的方法通过简单模型解决了MPC问题,用于在地平线区域的动力学和约束,而这种模型是可行的,并且不存在该模型的复杂模型。该方法利用计划和执行的交织来迭代识别这些区域,如果它们满足确切的模板/锚关系,可以安全地简化这些区域。我们表明,该方法不会损害系统的稳定性和可行性特性,并在仿真实验中衡量在四足动物上执行敏捷行为的仿真实验中的性能。我们发现,与固定复杂性实现相比,这种自适应方法可以实现更多的敏捷运动,并扩大可执行任务的范围。
translated by 谷歌翻译
由于合奏数据集的较大尺寸和多元和时间特征,可视化集成模拟的不确定性是具有挑战性的。研究合奏不确定性的一种流行方法是分析水平集的位置不确定性。概率游行立方体是一种对多变量高斯噪声分布​​进行蒙特卡洛采样的技术,以实现位置不确定性可视化水平集。但是,该技术遭受了较高的计算时间,因此无法实现交互式可视化和分析。本文介绍了一种基于深度学习的方法,用于学习具有多元高斯噪声假设的二维集合数据的级别不确定性。我们使用工作流程中的时变集成数据的前几个时间步骤训练模型。我们证明,我们训练的模型可以准确地渗透新的时间步骤的不确定性,并且比具有串行计算的原始概率模型的速度快于170倍,并且比原始平行计算快10倍。
translated by 谷歌翻译